Às vezes é possível o fracionamento daquilo que se divide; às vezes não. É impossível fracionar gatos ou pessoas. Não faz sentido fracionar uma bola de futebol, uma boneca ou um automóvel. Mas pode-se fracionar o chocolate, uma pizza, uma porção de terra ou um círculo.Você sabe que as crianças lidam com a divisão no dia a dia desde a Educação Infantil. Por exemplo: para distribuir 6 balas para 3 colegas de maneira que todos ganhem a mesma quantidade, elas usam estratégias como desenhar os doces e os amigos e traçar linhas, contar nos dedos, montar tabelas para relacionar os dados ou fazer somas sucessivas.
As dificuldades com a operação começam quando aparece a conta armada - a estrutura dela não revela de modo claro outras operações utilizadas durante o processo: a multiplicação e a subtração. É preciso, então, ir além do algoritmo. Ao considerar os modos de resolução dos estudantes e apresentar questões que envolvem mais que a resolução dos cálculos, a turma é desafiada a explorar a quantidade global envolvida e não somente o valor posicional dos números.
Nem tudo pode ser fracionado: Ex:"Na semana passada ganhei do meu namorado cinco barras de chocolate. Chegando em casa resolvi dividir o chocolate entre meus quatro sobrinhos. Dei inicialmente uma barra para cada um e a barra restante dividi em quatro partes iguais. Deste modo, cada criança recebeu uma barra inteira e mais a quarta parte de uma barra de chocolate".
O fracionamento permitiu dividir igualmente cinco barras de chocolate entre as quatro crianças, de modo que não sobrasse chocolate. Veja agora esta outra situação:
"A gata Mimi, lá da vizinha, deu cria no portão da minha casa. A ninhada tem cinco filhotes. Prometi distribuir os gatinhos entre quatro crianças que moram nas redondezas. Como não quero privilegiar uma delas, presenteando-a com dois gatinhos, preciso decidir o que fazer com o quinto filhote".
Nesta situação, como o fracionamento não é possível, a divisão em partes iguais faz com que, necessariamente, sobre um gatinho (resto da divisão).
As situações relacionadas com a divisão, nas quais não é possível o fracionamento daquilo que está sendo dividido, conduzem ao estudo da divisão no universo dos números naturais: 0, 1, 2, 3, 4, 5,...
As divisões efetuadas no universo dos números naturais são de dois tipos: as divisões que deixam resto (resto não nulo) e as divisões exatas (ou que têm resto zero). Por exemplo: a divisão de 10 por 4 deixa resto 2 e a divisão de 10 por 5 é exata.
Com isso nem toda divisão,vai dar exata.
Quando devemos dividir?
Do ponto de vista do adulto, que já domina a divisão, podemos até afirmar que as duas situações se equivalem, na medida em que ambas são resolvidas com uma simples divisão.No primeiro caso a resposta é 72 : 6 = 12, e no segundo é 90 : 18 = 5.
Entretanto, para a criança das primeiras séries escolares, essas situações são distintas. Com algum esforço vamos nos colocar no lugar desse aluno, procurando entender como ele pensa.
Observemos uma criança que tenta resolver concretamente aqueles problemas. Ela poderá enfrentar a primeira situação assim: observa o cesto cheio de ovos, olha para os seis cestos vazios, faz uma estimativa e resolve colocar 6 ovos em cada cesto.
Nenhum comentário:
Postar um comentário